y^2+4y=16

Simple and best practice solution for y^2+4y=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for y^2+4y=16 equation:



y^2+4y=16
We move all terms to the left:
y^2+4y-(16)=0
a = 1; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·1·(-16)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*1}=\frac{-4-4\sqrt{5}}{2} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*1}=\frac{-4+4\sqrt{5}}{2} $

See similar equations:

| 4+4n-3n=4 | | 3x+1=6x+0 | | 16r+5r-17r=20 | | −2=4x+5 | | -2=2+4n+0n | | -3/4m+8=20 | | |3x-4|=|7x-2| | | 4g-3g-1=10 | | 3-3n+n=3 | | 7y-1=5+5y | | 7x=-4x+10 | | 8x-8x+2x-2=14 | | 13k+4k-9k=8 | | 6x+2-x-5=22 | | a=2a–30 | | 8s-7s=18 | | 10u-6u-3u-u+2u=8 | | 2a–30=180 | | 10u-6u-3u-u+2u=28 | | -4=2x-8 | | a+(2a–30)=180 | | 18j-j-12j-3=7 | | .85*x=2.98 | | 5d+2d+3d=10 | | 19y+y-10y-2y=16 | | 18n+4n-18n-n=9 | | 11w-11w+4w=12 | | 11d-6d-2d+5d=8 | | n^2-n-376=0 | | 8-12z=13z | | n^2-n-378=0 | | (6-v)(5v*8)=0 |

Equations solver categories